

# Integrating R with HPC Success stories form pharmaceutical research Guillem de Valles Ibáñez

8/05/2024 www.hpcnow.com

# Overview - HPCNow



- Young company (born in 2012)
- Staff: 48 HPC experts
- No financial dependencies
- Strong growth
- Part of Do IT Now alliance with 140+ HPC experts
- Hiring +20 more in Q2

Fernly Rise, 2019 Auckland (New Zealand)

**Auckland** 



#### **Customers**





















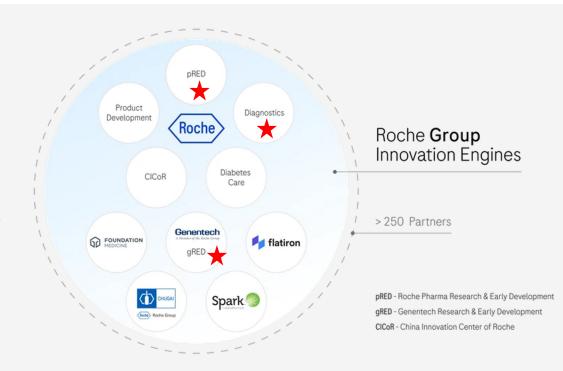






and many more...




# Overview - Roche

#### F. Hoffmann-La Roche AG

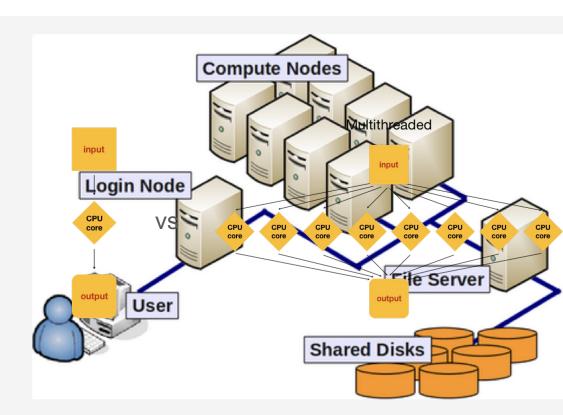
#### 5th largest pharmaceutical by revenue

Swiss multinational with headquarters in Basel

- Founded in 1896
- Revenue of 122.05 billion NZD (2022)
- 103,613 employes (2022)
- Acquired 50 companies
- 2 major divisions: Pharmaceutical and diagnostics
- Focus on health care applications (targeting physicians, hospitals, clinics and consumers) and pharmaceutical and biotechnology research






# Overview - HPC

#### High Performance Computing clusters

#### **High Performance Computing**

Use of computer clusters to solve advanced computation problems

- 100s of users
- 100s of apps
- 1000s of cores for processing
- 100s of Tb of storage
- 100s of Gb of memory (per node)
- 100s of GPUs
- Job management and monitoring
- Interactive applications (Jupyter notebooks, RStudio,...)





# Overview - HPC



2

3

4

5

6

8

9

10

# Top 500 (November 2023)

| SUPERCOMPUT     | TER SITES                    | J    |           |                  |
|-----------------|------------------------------|------|-----------|------------------|
| Rank (previous) | Rmax<br>Rpeak<br>(PetaFLOPS) | Name | CPU cores | Accelerator (e.g |

Frontier

Aurora

Eagle

Fugaku

LUMI

Leonardo

Summit

MareNostrum 5 ACC

Eos NVIDIA DGX

SuperPOD

Sierra

1,194.00

1.679.82

585 34

1.059.33

561.20

846.84

442.010

537.212

309.10

428.70

238.70

304.47

148.600

200.795

138.20

265.57

121.40

188.65

94.640

125.712

# erator (e.g.

561,664

 $(8.776 \times 64\text{-core})$ 

565.656

(10.878 × 52-core)

93,600

(1.950 × 48-core)

7,630,848

(158,976 × 48-core)

186,624

(2.916 × 64-core)

110.592

(3.456 × 32-core)

202,752

(9.216 × 22-core)

89,600

 $(2.240 \times 40\text{-core})$ 

46.592

(832 × 56-core)

190.080

(8.640 × 22-core)

36,992 × 220 AMD

Instinct MI250X 32.634 × 128 Intel Max

1550

7,800 × 132 Nvidia

Hopper H100

11.664 × 220 AMD

Instinct MI250X

15.872 × 108 Nvidia

Ampere A100

27,648 × 80 Nvidia

Tesla V100

4,480 × 132 Nvidia

Hopper H100

3.328 × 132 Nvidia

Hopper H100

17.280 × 80 Nvidia

Tesla V100

**Total Cores** 

(CPUs +

Accelerators)

8.699.904

4.742.808

1.123.200

7.630.848

2,752,704

1.824.768

2,414,592

680.960

485,888

1,572,480

Manufacturer

HPE

**HPE** 

Microsoft

Fujitsu

HPE

Atos

**IBM** 

BullSeguana

Nvidia

**IBM** 

Site

country

Oak Ridge National Laboratory

United States

Argonne National Laboratory

United States

Microsoft

United States

RIKEN Center for Computational

Science

Japan

EuroHPC JU

European Union, Kajaani, Finland

EuroHPC JU

European Union, Bologna, Italy

Oak Ridge National Laboratory

United States

EuroHPC JU

European Union, Barcelona,

Spain

Nvidia

United States

Lawrence Livermore National

Laboratory

United States

Year

2022

2023

2023

2020

2022

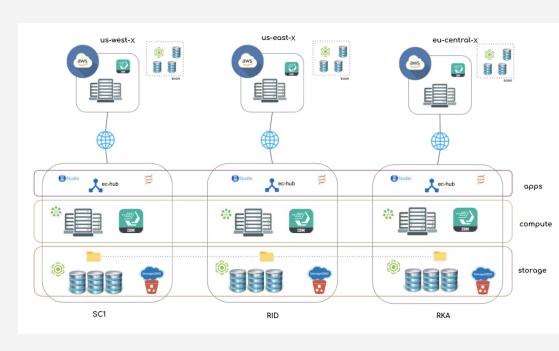
2023

2018

2023

2023

2018




# Overview - sHPC

#### Roche's shared High Performance Computing clusters

The Shared-HPC Service (sHPC) provides an ecosystem for High-Performance Compute (HPC) and High-Throughput Compute (HTC) workloads with cloud-bursting capabilities via an Intelligent Scheduler that coordinates the execution of containerized and non-containerized workloads, close to the data, maximizing productivity and resource utilization.

We also have an HPC called Rosalind, exclusive for gRED users and to be decommissioned at the end of 2024





# Software provisioning - RoCS

## Roche Computing Stack

#### **RoCS** appstack

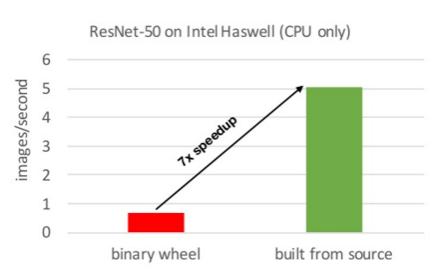
Provides a unified, portable, modern scientific applications environment

- Community based
- Inspired by Compute Canada, the European Environment for Scientific software Installations (EESSI) and CERN models

#### **RoCS Architecture:** Software layer applications + dependencies Host OS Compatibility layer provides levelling the ground across Linux distros network & GPU drivers. Filesystem layer resource manager distribution of the software stack (Slurm), host operating system (any Linux distribution)



# Software provisioning - why build from source?


### Speed!

#### Micro architecture awareness

Building packages from source in an HPC can significantly increase efficiency and speed

- Binaries from repositories have no microarchitecture optimisation for portability
- Precompiled binaries from old architectures might work in new ones with a performance penalty
- Precompiled binaries from new architectures will not work in older ones due to lack of hardware instructions







4 ways to provision R for our users

#### **Self provisioning**

Users can install the R packages they need in their home or

scratch folders as they would in their computers



Modules

Web portal

Containers

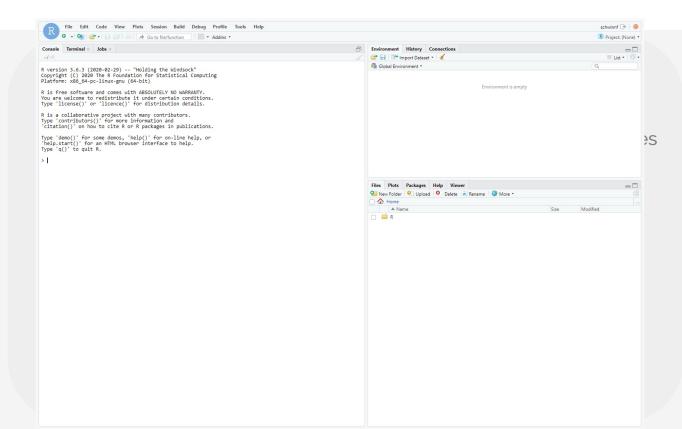


4 ways to provision R for our users

#### **Modules**

The main way to provision apps to our users in the sHPC clusters is through a Lua based module system. Lmod is an implementation of Environment Modules through modulefiles, which contain all the necessary information to allow a user to run a particular application or set of libraries

web bortat


Container

```
🕞 🦠 ml avail R-
                                                                                ----- RoCS 2020.08 Modules
AFNI/21.3.10-foss-2020a-R-4.0.5-Anaconda3-2021.05
                                                          R-bundle-Bioconductor/3.14-foss-2020a-R-4.1.2
                                                                                                               R-Roche-bundle/2022.05-foss-2020a-R-4.2.0-Anaconda3-2021.05
CellRanger-ARC/2.0.2
                                                          R-bundle-Bioconductor/3.15-foss-2020a-R-4.2.0
                                                                                                               R-Roche-bundle/2022.09-foss-2020a-R-4.1.2-Anaconda3-2021.05
CellRanger-ATAC/2.1.0
                                                          R-bundle-Bioconductor/3.16-foss-2020a-R-4.2.2
                                                                                                               R-Roche-bundle/2022.09-foss-2020a-R-4.2.0-Anaconda3-2021.05
dropEst/0.8.6-foss-2020a-R-4.0.5
                                                          R-bundle-Bioconductor/3.17-foss-2020a-R-4.3.0 (D)
                                                                                                               R-Roche-bundle/2022.12-foss-2020a-R-4.2.0-Anaconda3-2021.05
MariaDB-connector-c/3.1.7-GCCcore-9.3.0
                                                          R-minimal/4.3.1-foss-2020a
                                                                                                               R-Roche-bundle/2023.03-foss-2020a-R-4.2.0-Anaconda3-2021.05
                                                          R-Roche-bundle/2021.05-foss-2020a-R-4.0.5
                                                                                                               R-Roche-bundle/2023.05-foss-2020a-R-4.3.0-Anaconda3-2021.05 (D)
ncdf4/1.17-foss-2020a-R-4.0.5
ncdf4/1.18-foss-2020a-R-4.1.2
                                                          R-Roche-bundle/2021.12-foss-2020a-R-4.1.2
                                                                                                               RSEM/1.3.3-foss-2020a-R-4.1.2-Anaconda3-2021.05
                                                          R-Roche-bundle/2022.04-foss-2020a-R-4.1.2
R-bundle-Bioconductor/3.12-foss-2020a-R-4.0.5
                                                                                                               RStudio-Server/1.3.1093-foss-2020a-Java-11-R-4.0.5
Where:
D: Default Module
```

Use "module spider" to find all possible modules and extensions. Use "module keyword key1 key2 ..." to search for all possible modules matching any of the "keys".



#### 4 ways to provision R for our users



Self provisioning



4 ways to provision R for our users

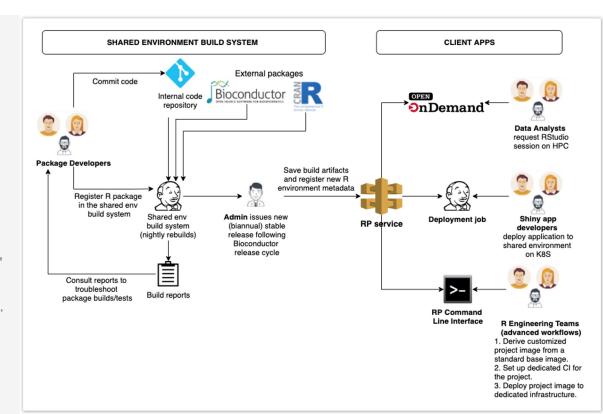
Self provisioning

Web porta

#### **Containers**

In our sHPC we use Singularity as our container platform, which can also build docker containers. They can be accessed through the RStudio / Posit workbench IDE via OOD or through the RStudio CEDAR module (as in the previous slide)








Computational Environments for Data Analysis and Research (CEDAR)

#### **CEDAR**

- The shared environment build system is responsible for building and testing all packages, which constitute an R environment.
- Stable environments are typically released on a biannual basis and provide versioned images (Docker, Singularity) and their corresponding R package libraries.
- Each release (metadata) is registered using the RP Service REST API.



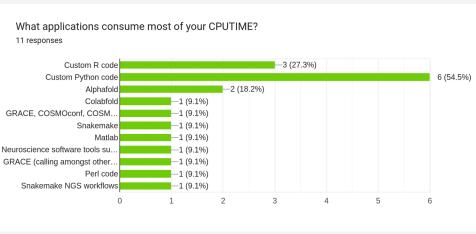


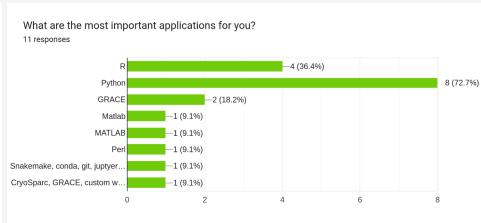
#### Genentech R Archive Network (GRAN)

#### **GRAN**

Genentech's internal R package build system and repository, similar to CRAN or Bioconductor.

It provides:


- Continuous, incremental building and testing of internally developed
   R packages (packages with new versions are built nightly)
- Automatic availability of packages for analysts who work on sHPC
- Live R package repositories and archives for analysts working on other HPCs or computers






Use of R within Roche

#### **Results from recent user survey**







Use of R within Roche

#### **Posit connect**

Shiny server pro to host our shiny apps

- Integration with other apps (snakemake, nextflow, ...)
- Optional authentication security (access only to members of a specific UNIX group)
- Application code stored and maintained in GitHub repositories







# Thank you

Contact us: <a href="mailto:info@hpcnow.com">info@hpcnow.com</a>
guillem.devalles@hpcnow.com