Using complex models to support every-day biosecurity decisions for aquatic invasive species

Amy Kinsley1, Petra Muellner2, Nick Snellgrove3, Uli Muellner2, Nicholas Phelps4

1 University of Minnesota, College of Veterinary Medicine, Veterinary Population Medicine, St. Paul, Minnesota, USA
2 Epi-interactive Ltd, Wellington, New Zealand
3 University of Minnesota, Minnesota Aquatic Invasive Species Research Center, St. Paul, Minnesota, USA

OVERVIEW

Invasions of aquatic invasive species (AIS) have imposed significant economic and ecological damage to aquatic ecosystems across the globe. Once an invasive population has established in a new habitat, eradication can be financially and logistically impossible, motivating management strategies to rely heavily upon prevention measures aimed at reducing introduction and spread.

To be effective, on-the-ground management of aquatic invasive species requires decision-making surrounding the allocation of limited resources.

Watercraft inspection is one activity that most AIS managers counties engage in to prevent or limit the spread of non-native aquatic species in Minnesota. During inspections, survey data is collected about the location of boating activities, which has been used to develop models to inform county-level watercraft inspection plans.

OBJECTIVE

To be effective, on-the-ground management of aquatic invasive species requires decision-making surrounding the allocation of limited resources.

The objective of this study was to develop an interactive web-based dashboard to support watercraft inspection planning to maximize the number of inspected watercrafts that move from AIS infested to uninfested lakes, within and outside of counties in Minnesota, USA.

STUDY LOCATION

In the US, local, state, and federal agencies have invested in boat inspection and education programs. The Minnesota AIS Prevention Aid program provides $10 million a year to counties to prevent the introduction and limit the spread of AIS (1). Funding is allocated based on each county’s share of watercraft trailer launches and parking spaces.

COUNTIES MAY ALLOCATE THEIR FUNDS TO A VARIETY OF ALLOWED ACTIVITIES AT THEIR DISCRETION, INCLUDING WATERCRAFT INSPECTION, EDUCATION, POPULATION ASSESSMENT, AND RAPID RESPONSE.

DATA

A network of boater movement was created using more than 1.6 million reported lake-to-lake connections from inspection surveys. The connections between pairs of lakes were directional and weighted based on the estimated number of boats moving between them.

Using the predicted network of boater movement, boats were designated as ‘risky’ if they moved from an infested waterbody to an uninfested waterbody.

AIS explorer houses two models that can be used to support surveillance activities. The watercraft inspection model can be accessed by selecting the ‘Prioritization for Watercraft Inspections’ tab.

Users can select a county throughout the entire state of Minnesota.

Users can select up to four risk species and any combination thereof.

AIS managers can select a management goal which described the percentage of boats that move from infested to uninfested waterbodies.

The chart lists the lakes in order from the highest (rank 1) to lowest priority until the management goal is reached.

The chart is exportable as a comma separated values (csv) file. In addition, users can export a map describing the location of lakes for prioritization and a chart of diminishing returns.

The map highlights the county of interest with the lakes chosen as inspection locations in teal. The map is exportable as a portable network graphics (PNG) file.

REFERENCES AND ACKNOWLEDGEMENTS

FUTURE DIRECTIONS

Future studies will quantify the benefits of state-level coordination and between-county cooperation in watercraft inspection plans to support decision-making in watercraft inspection programs.

The outputs of this activity will be integrated into AIS explorer to foster cooperation, or the sharing of information and resources, across counties and ultimately lead to more efficient use of resources.